DP based multi-stage ARO for coordinated scheduling of CSP and wind energy with tractable storage scheme: Tight formulation and solution technique
Houbo Xiong,
Mingyu Yan,
Chuangxin Guo,
Yi Ding and
Yue Zhou
Applied Energy, 2023, vol. 333, issue C, No S0306261922018359
Abstract:
The concentrating solar power plants (CSP) have well potential in coordinating with the ever-increasing wind energy during power scheduling. However, the existing studies individually design the day-ahead or intra-day optimization of coordinated scheduling between CSP and wind power, which makes the scheduling decisions not optimal in terms of economic and environmental benefits. Additionally, the non-anticipativity of scheduling decisions are not considered in most of them. This paper proposes a novel dynamic programming (DP) formulated multi-stage robust reserve scheduling (DPMRS) model, which is the first attempt to realize the day-ahead and intra-day joint optimization for coordinated scheduling of CSP and wind power. Under the framework of multi-stage adaptive robust optimization (ARO), DPMRS model enforces the non-anticipativity of scheduling. Besides, a convex modelling technique for thermal energy storage (TES) is presented to ensure the tractability of DPMRS model, whose effectiveness is proved mathematically. Moreover, to efficient solve the DPMRS model, a robust dual dynamic programming with accelerated upper approximation (RDDP-AU) solution methodology is developed, and the mathematical proof for its convergence is provided. Numerical studies on the modified IEEE RTS-79 system and a real-world system in Northwest China validate the effectiveness of the proposed scheduling model and solution methodology. The simulation results demonstrate the DPMRS model brings a 17.22% reduction in scheduling cost, and reduces 57.39% curtailment of renewable energy. Compared with the conventional algorithm, the RDDP-AU significantly reduces the computational consumption by 87.56%, and with the error less than 0.074%.
Keywords: Concentrated solar power plants; Wind energy; Power scheduling; Dynamic programming; Multi-stage robust optimization; Thermal energy storage; Robust dual dynamic programming (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922018359
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018359
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120578
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().