EconPapers    
Economics at your fingertips  
 

DP based multi-stage ARO for coordinated scheduling of CSP and wind energy with tractable storage scheme: Tight formulation and solution technique

Houbo Xiong, Mingyu Yan, Chuangxin Guo, Yi Ding and Yue Zhou

Applied Energy, 2023, vol. 333, issue C, No S0306261922018359

Abstract: The concentrating solar power plants (CSP) have well potential in coordinating with the ever-increasing wind energy during power scheduling. However, the existing studies individually design the day-ahead or intra-day optimization of coordinated scheduling between CSP and wind power, which makes the scheduling decisions not optimal in terms of economic and environmental benefits. Additionally, the non-anticipativity of scheduling decisions are not considered in most of them. This paper proposes a novel dynamic programming (DP) formulated multi-stage robust reserve scheduling (DPMRS) model, which is the first attempt to realize the day-ahead and intra-day joint optimization for coordinated scheduling of CSP and wind power. Under the framework of multi-stage adaptive robust optimization (ARO), DPMRS model enforces the non-anticipativity of scheduling. Besides, a convex modelling technique for thermal energy storage (TES) is presented to ensure the tractability of DPMRS model, whose effectiveness is proved mathematically. Moreover, to efficient solve the DPMRS model, a robust dual dynamic programming with accelerated upper approximation (RDDP-AU) solution methodology is developed, and the mathematical proof for its convergence is provided. Numerical studies on the modified IEEE RTS-79 system and a real-world system in Northwest China validate the effectiveness of the proposed scheduling model and solution methodology. The simulation results demonstrate the DPMRS model brings a 17.22% reduction in scheduling cost, and reduces 57.39% curtailment of renewable energy. Compared with the conventional algorithm, the RDDP-AU significantly reduces the computational consumption by 87.56%, and with the error less than 0.074%.

Keywords: Concentrated solar power plants; Wind energy; Power scheduling; Dynamic programming; Multi-stage robust optimization; Thermal energy storage; Robust dual dynamic programming (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922018359
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018359

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120578

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018359