What really matters in multi-storey building design? A simultaneous sensitivity study of embodied carbon, construction cost, and operational energy
H.L. Gauch,
C.F. Dunant,
W. Hawkins and
A. Cabrera Serrenho
Applied Energy, 2023, vol. 333, issue C, No S0306261922018426
Abstract:
Buildings account for over one-third of global emissions and energy use. Meeting climate pledges will require achieving high operational energy efficiency with low embodied impacts in new construction. Yet, a systematic identification of the relative influence of building design parameters on both operational and embodied efficiencies has rarely been attempted. In this paper we explore for the first time the sensitivity of a wide range of design and operation parameters in terms of embodied carbon, construction cost, as well as heating and cooling loads for multi-storey buildings. We devised a model to estimate the relative importance of a large set of input variables, describing a building’s shape, size, layout, structure, ventilation, windows, insulation, air, and use for residential and office multi-storey buildings, across different climates. We found that increasing building compactness, using steel or timber instead of concrete frames, lowering window-to-wall ratio, choosing the most suitable glazing, and employing mechanical ventilation with heat recovery are the most important measures to decrease embodied emissions and operational energy. The most significant trade-offs with construction cost were found for the choice of frame material and in the decision whether to install mechanical ventilation. We estimate that 28–44% of yearly heating and cooling energy and 6 Gt cumulative embodied CO2e until 2050 could be saved in multi-storey buildings, without employing new technologies.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922018426
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018426
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120585
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().