EconPapers    
Economics at your fingertips  
 

Research on combined solar fiber lighting and photovoltaic power generation system based on the spectral splitting technology

Longyu Xia, Gaosheng Wei, Gang Wang, Liu Cui and Xiaoze Du

Applied Energy, 2023, vol. 333, issue C, No S0306261922018736

Abstract: Modern buildings tend to be high-rise and dense, and indoor lightings are extensively depending on electricity even on sunny days currently. In addition, for those existing solar lighting technologies in development, only the visible light of solar radiation has been used, with the extra spectral energy dissipated by waste heat. A solar fiber optic lighting and photovoltaic power generation system based on spectral splitting technology (SSLP) is proposed and tested in this study. The sunlight is divided into different wave bands through a spectral beam splitter, where the visible light is used for optical fiber illumination, and the near-infrared radiation is used for photovoltaic power generation. The designed SSLP system is simulated with the Monte Carlo ray tracing method, and then experimentally tested. The effects of structural parameters and tracking accuracy on the optical performances of the system are examined. The experimental results show that the sunlight transmitted to the room using optical fiber is bright and comfortable, with an average lighting efficiency of 15.1 %; meanwhile, the average power generation efficiency of the system is about 6.1 %, reaching one-third of the value of conventional PV modules. When the output luminous flux is converted by the luminous efficiency of fluorescent lamps, the overall average efficiency of the system can reach to 29.5 %; when converted by LED lamps, the overall average efficiency can reach to 25.4 %, which are both more efficient than the conventional PV power generation. Taking the solar radiation conditions in Beijing as an example, when the sunlight collection area of the system is 1 m2, it can provide 8 h of sunlight illumination of 500 lx per day for a room of 19.7 m2, while the daily generated electricity can be provided to the LED lamps to extend the lighting time by 2.5 h.

Keywords: Solar energy; Spectral beam splitter; Optical fiber lighting; Photovoltaic power generation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922018736
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018736

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120616

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018736