A novel Koopman-inspired method for the secondary control of microgrids with grid-forming and grid-following sources
Xun Gong and
Xiaozhe Wang
Applied Energy, 2023, vol. 333, issue C, No S0306261922018888
Abstract:
This paper proposes an online data-driven Koopman-inspired identification and control method for microgrid secondary voltage and frequency control. Unlike typical data-driven methods, the proposed method requires no warm-up training yet with guaranteed bounded-input–bounded-output (BIBO) stability and even asymptotic stability under some mild conditions. The proposed method estimates the Koopman state space model adaptively so as to perform effective secondary voltage and frequency control that can handle microgrid nonlinearity and uncertainty. Case studies in the 4-bus and 13-bus microgrid test systems (with grid-forming and grid-following sources) demonstrate the effectiveness and robustness of the proposed identification and control method subject to the change of operating conditions and large disturbances (e.g., microgrid mode transitions, generation/load variations) even with measurement noises and time delays.
Keywords: Data-driven control; Adaptive Koopman-inspired identification; Microgrid secondary control; Grid-forming; Grid-following; Koopman operator control; Observer Kalman filter identification (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922018888
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:333:y:2023:i:c:s0306261922018888
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120631
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().