EconPapers    
Economics at your fingertips  
 

Model-based run-time and memory reduction for a mixed-use multi-energy system model with high spatial resolution

Christian Klemm, Frauke Wiese and Peter Vennemann

Applied Energy, 2023, vol. 334, issue C, No S0306261922018311

Abstract: Local and regional energy systems are becoming increasingly entangled. Therefore, models for optimizing these energy systems are becoming more and more complex and the required computing resources (run-time and random access memory usage) are increasing rapidly. The computational requirements can basically be reduced solver-based (mathematical optimization of the solving process) or model-based (simplification of the real-world problem in the model). This paper deals with identifying how the required computational requirements for solving optimization models of multi-energy systems with high spatial resolution change with increasing model complexity and which model-based approaches enable to reduce the requirements with the lowest possible model deviations.

Keywords: Energy system model; Optimization; Model-based; Run-time; Memory usage; Modeling methods; Multi-energy system (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922018311
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:334:y:2023:i:c:s0306261922018311

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120574

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261922018311