EconPapers    
Economics at your fingertips  
 

Quantum computing for future real-time building HVAC controls

Zhipeng Deng, Xuezheng Wang and Bing Dong

Applied Energy, 2023, vol. 334, issue C, No S0306261922018785

Abstract: Buildings contribute to more than 70% of overall U.S. electricity usage and greenhouse gas (GHG) emissions. HVAC systems in buildings often consume more than 40% of the total building energy usage. To reduce such high energy use, numerous control strategies including optimal and predictive controls have been developed and demonstrated. To achieve a near real-time solution, most previous research has simplified the non-linearity of building thermodynamics and provided an approximate optimal solution. The future HVAC control optimizes more connected devices in buildings, which requires a rapid and accurate response, not only to the building itself but also to the grid signals. It also poses the challenge of solving non-linear problems with discrete variables. With the recent development of quantum computers, this has become feasible. In this paper, we developed a new optimization solution based on quantum annealing for model predictive control (MPC) of a rooftop unit (RTU). Compared to traditional optimization methods, we obtained similar solutions with less than 2% differences and improved computational speed from hours to seconds. We also demonstrated an 80% reduction in total electricity consumption and a 21% reduction in electricity bills by considering day-ahead price time-of-use demand response signals. Quantum computing has proven capable of solving large-scale non-linear discrete optimization problems for building energy systems.

Keywords: Discrete optimization; Mixed-integer programming; Quadratic unconstrained binary optimization; Quantum annealing; Energy-efficient building (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922018785
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:334:y:2023:i:c:s0306261922018785

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120621

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261922018785