Quantum computing for future real-time building HVAC controls
Zhipeng Deng,
Xuezheng Wang and
Bing Dong
Applied Energy, 2023, vol. 334, issue C, No S0306261922018785
Abstract:
Buildings contribute to more than 70% of overall U.S. electricity usage and greenhouse gas (GHG) emissions. HVAC systems in buildings often consume more than 40% of the total building energy usage. To reduce such high energy use, numerous control strategies including optimal and predictive controls have been developed and demonstrated. To achieve a near real-time solution, most previous research has simplified the non-linearity of building thermodynamics and provided an approximate optimal solution. The future HVAC control optimizes more connected devices in buildings, which requires a rapid and accurate response, not only to the building itself but also to the grid signals. It also poses the challenge of solving non-linear problems with discrete variables. With the recent development of quantum computers, this has become feasible. In this paper, we developed a new optimization solution based on quantum annealing for model predictive control (MPC) of a rooftop unit (RTU). Compared to traditional optimization methods, we obtained similar solutions with less than 2% differences and improved computational speed from hours to seconds. We also demonstrated an 80% reduction in total electricity consumption and a 21% reduction in electricity bills by considering day-ahead price time-of-use demand response signals. Quantum computing has proven capable of solving large-scale non-linear discrete optimization problems for building energy systems.
Keywords: Discrete optimization; Mixed-integer programming; Quadratic unconstrained binary optimization; Quantum annealing; Energy-efficient building (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922018785
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:334:y:2023:i:c:s0306261922018785
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120621
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().