EconPapers    
Economics at your fingertips  
 

PANDEMIC: Occupancy driven predictive ventilation control to minimize energy consumption and infection risk

Zixin Jiang, Zhipeng Deng, Xuezheng Wang and Bing Dong

Applied Energy, 2023, vol. 334, issue C, No S0306261923000405

Abstract: During the SARS-CoV-2 (COVID-19) pandemic, governments around the world have formulated policies requiring ventilation systems to operate at a higher outdoor fresh air flow rate for a sufficient time, which has led to a sharp increase in building energy consumption. Therefore, it is necessary to identify an energy-efficient ventilation strategy to reduce the risk of infection. In this study, we developed an occupant-number-based model predictive control (OBMPC) algorithm for building ventilation systems. First, we collected the occupancy and Heating, ventilation, and air conditioning system (HVAC) data from March to July 2021. Then, four different models (Auto regression moving average-based multilayer perceptron (ARMA_MLP), Recurrent neural networks (RNN), Long short-term memory networks (LSTM), and Nonhomogeneous Markov with change points detection (NH_Markov)) were used to predict the number of room occupants from 15 min to 24 h ahead with an interval output. We found that each model could predict the number of occupants with 85 % accuracy using a one-person offset. The accuracy of 15 min of the ahead prediction could reach 95 % with a one-person offset, but none of them could track abrupt changes. The occupancy prediction results were used to calculate the ventilation demand using the Wells-Riley equation, and the upper bound can maintain an infection risk lower than 2 % for 93 % of the day. This OBMPC model could reduce the coil load by 52.44 % and shift the peak load by 3 h up to 5 kW compared with 24 × 7 h full outdoor air (OA) system when people wear masks in the space. The occupancy prediction uncertainty could cause a 9 % to 26 % difference in demand ventilation, a 0.3 °C to 2.4 °C difference in zone temperature, a 28.5 % to 44.5 % difference in outdoor airflow rate, and a 10.7 % to 28.2 % difference in coil load.

Keywords: Occupancy prediction; Model predictive control; COVID-19; Demand ventilation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923000405
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000405

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.120676

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000405