A bio-inspired foldable-wing wave energy converter for ocean robots
Weixing Chen,
Yunfei Lu,
Shaoxun Li and
Feng Gao
Applied Energy, 2023, vol. 334, issue C, No S0306261923000600
Abstract:
In remote and harsh sea areas, ocean robots are practical tools to replace humans to execute ocean operations. However, limited power supply constrains the performance of ocean robots, especially in terms of duration time and operation range. Inspired by flying fish, a foldable-wing wave energy converter (FW-WEC) is proposed for ocean robots to extract energy from wave. Equipped with the wave-energy wing, the FW-WEC is capable of switching from the WEC mode that possesses large energy capturing surface to the robot mode with the characteristic of compact structure, which allows for the installation on robots. To satisfy the requirements of the wave-energy wing, several foldable structures are considered and evaluated based on the defined performance index. With the serial four-bar linkage selected and adopted, a prototype of FW-WEC is designed, constructed and tested. The hydrodynamic model is established to analysis the motion response of the prototype under regular wave, of which the accuracy is verified compared with experimental results. According to the wave tank experiment carried out under different wave conditions, the maximum power output of FW-WEC reaches up to 2.6 W and the corresponding capture width ratio is calculated to be 8.0 %. The proposed FW-WEC offers a promising solution for the enhancement of endurance capability of ocean robots.
Keywords: FW-WEC; Wave-energy wing; Foldable structure; Hydrodynamic model; Wave tank experiment (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923000600
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000600
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.120696
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().