EconPapers    
Economics at your fingertips  
 

A multi-agent reinforcement learning approach for investigating and optimising peer-to-peer prosumer energy markets

Ross May and Pei Huang

Applied Energy, 2023, vol. 334, issue C, No S0306261923000697

Abstract: Current power grid infrastructure was not designed with climate change in mind, and, therefore, its stability, especially at peak demand periods, has been compromised. Furthermore, in light of the current UN’s Intergovernmental Panel on Climate Change reports concerning global warming and the goal of the 2015 Paris climate agreement to constrain global temperature increase to within 1.5–2 °C above pre-industrial levels, urgent sociotechnical measures need to be taken. Together, Smart Microgrid and renewable energy technology have been proposed as a possible solution to help mitigate global warming and grid instability. Within this context, well-managed demand-side flexibility is crucial for efficiently utilising on-site solar energy. To this end, a well-designed dynamic pricing mechanism can organise the actors within such a system to enable the efficient trade of on-site energy, therefore contributing to the decarbonisation and grid security goals alluded to above. However, designing such a mechanism in an economic setting as complex and dynamic as the one above often leads to computationally intractable solutions. To overcome this problem, in this work, we use multi-agent reinforcement learning (MARL) alongside Foundation – an open-source economic simulation framework built by Salesforce Research – to design a dynamic price policy. By incorporating a peer-to-peer (P2P) community of prosumers with heterogeneous demand/supply profiles and battery storage into Foundation, our results from data-driven simulations show that MARL, when compared with a baseline fixed price signal, can learn a dynamic price signal that achieves both a lower community electricity cost, and a higher community self-sufficiency. Furthermore, emergent social–economic behaviours, such as price elasticity, and community coordination leading to high grid feed-in during periods of overall excess photovoltaic (PV) supply and, conversely, high community trading during overall low PV supply, have also been identified. Our proposed approach can be used by practitioners to aid them in designing P2P energy trading markets.

Keywords: Peer-to-peer market; Community-based market; Dynamic pricing; Multi-agent systems; Multi-agent reinforcement learning; Proximal Policy Optimisation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923000697
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000697

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.120705

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000697