EconPapers    
Economics at your fingertips  
 

Deep reinforcement learning-based two-timescale Volt-VAR control with degradation-aware smart inverters in power distribution systems

Farzana Kabir, Nanpeng Yu, Yuanqi Gao and Wenyu Wang

Applied Energy, 2023, vol. 335, issue C, No S0306261922018864

Abstract: Higher penetration of intermittent solar photovoltaic (PV) systems in the distribution grid results in frequent voltage fluctuations. The conventional voltage regulating devices operating on a slow-timescale need to be supplemented with the fast-operating smart inverters with adjustable reactive power setpoints. Complete and accurate information about distribution network topology and line parameters is necessary for conventional model-based Volt-VAR control (VVC) methods. However, such information is often unavailable. To tackle these challenges, a reinforcement learning-based two-timescale VVC algorithm is proposed in this paper that jointly controls the conventional voltage regulating devices at the slow-timescale and the smart inverters at the fast-timescale. Our proposed VVC algorithm simultaneously minimizes voltage violation costs and system operation costs in a model-free manner utilizing historical operational data. Two hierarchically organized agents are set up for the slow-timescale and fast-timescale problems, which are coupled through a communication scheme. The two sets of control policies are learned concurrently by a deep deterministic policy gradient and multi-agent soft actor-critic algorithm respectively. Comprehensive numerical studies performed with the IEEE 123-bus distribution test feeder show that the proposed framework can identify near optimal control actions of voltage regulating devices and smart inverters in real-time operations.

Keywords: Two-timescale; Volt-VAR control; Smart inverters; High solar PV penetration; Reinforcement learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922018864
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:335:y:2023:i:c:s0306261922018864

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120629

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:335:y:2023:i:c:s0306261922018864