Design and planning of flexible mobile Micro-Grids using Deep Reinforcement Learning
Cesare Caputo,
Michel-Alexandre Cardin,
Pudong Ge,
Fei Teng,
Anna Korre and
Ehecatl Antonio del Rio Chanona
Applied Energy, 2023, vol. 335, issue C, No S0306261923000715
Abstract:
Ongoing risks from climate change have significantly impacted the livelihood of global nomadic communities and are likely to lead to increased migratory movements in coming years. As a result, mobility considerations are becoming increasingly important in energy systems planning, particularly to achieve energy access in developing countries. Advanced “Plug and Play” control strategies have been recently developed with such a decentralized framework in mind, allowing easier interconnection of nomadic communities, both to each other and to the main grid. Considering the above, the design and planning strategy of a mobile multi-energy supply system for a nomadic community is investigated in this work. Motivated by the scale and dimensionality of the associated uncertainties, impacting all major design and decision variables over the 30-year planning horizon, Deep Reinforcement Learning (DRL) Flexibility Analysis is implemented for the design and planning problem. DRL based solutions are benchmarked against several rigid baseline design options to compare expected performance under uncertainty. The results on a case study for ger communities in Mongolia suggest that mobile nomadic energy systems can be both technically and economically feasible, particularly when considering flexibility, although the degree of spatial dispersion among households is an important limiting factor. Additionally, the DRL based policies lead to the development of dynamic evolution and adaptability strategies, which can be used by the targeted communities under a very wide range of potential scenarios. Key economic, sustainability and resilience indicators such as Cost, Equivalent Emissions and Total Unmet Load are measured, suggesting potential improvements compared to available baselines of up to 25%, 67% and 76%, respectively. Finally, the decomposition of values of flexibility and plug and play operation is presented using a variation of real options theory, with important implications for both nomadic communities and policymakers focused on enabling their energy access.
Keywords: Deep Reinforcement Learning; Energy Systems Design; Flexibility in Design; Mobile Micro-Grids Systems; Real Options Analysis; Uncertainty and Risk Analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923000715
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:335:y:2023:i:c:s0306261923000715
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.120707
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().