Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach
Yi Wang,
Dawei Qiu,
Mingyang Sun,
Goran Strbac and
Zhiwei Gao
Applied Energy, 2023, vol. 335, issue C, No S030626192300123X
Abstract:
The large-scale integration of distributed energy resources into the energy industry enables the fast transition to a decarbonized future but raises some potential challenges of insecure and unreliable operations. Multi-energy Microgrids (MEMGs), as localized small multi-energy systems, can effectively integrate a variety of energy components with multiple energy sectors, which have been recently recognized as a valid solution to improve the operational security and reliability. As a result, a massive amount of research has been conducted to investigate MEMG energy management problems, including both model-based optimization and model-free learning approaches. Compared to optimization approaches, reinforcement learning is being widely deployed in MEMG energy management problems owing to its ability to handle highly dynamic and stochastic processes without knowing any system knowledge. However, it is still difficult for conventional model-free reinforcement learning methods to capture the physical constraints of the MEMG model, which may therefore destroy its secure operation. To address this research challenge, this paper proposes a novel safe reinforcement learning method by learning a dynamic security assessment rule to abstract a physical-informed safety layer on top of the conventional model-free reinforcement learning energy management policy, which can respect all the physical constraints through mathematically solving an action correction formulation. In this setting, the secure energy management of the MEMG can be guaranteed for both training and test procedures. Extensive case studies based on two integrated systems (i.e., a small 6-bus power and 7-node gas network, and a large 33-bus power and 20-node gas network) are carried out to verify the superior performance of the proposed physical-informed reinforcement learning method in achieving a cost-effective MEMG energy management performance while respecting all the physical constraints, compared to conventional reinforcement learning and optimization approaches.
Keywords: Multi-energy microgrid; Energy management; Dynamic security assessment; Physical-informed safety layer; Reinforcement learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192300123X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:335:y:2023:i:c:s030626192300123x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.120759
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().