Long-term performance of a front-end capillary heat exchanger for a metro source heat pump system
Yongming Ji,
Wenze Wu and
Songtao Hu
Applied Energy, 2023, vol. 335, issue C, No S0306261923001368
Abstract:
In recent years, the number of subways has rapidly increased, as they can effectively alleviate urban traffic congestion. However, subways can also result in thermal pollution problems in underground spaces. The long-term operation of a subway causes thermal accumulation in the surrounding rock of a tunnel, severely affecting the safe and efficient operation of the subway. The metro source heat pump technology is an effective approach to address the foregoing problem. However, currently, the research on its systematic design methods remains inadequate. In particular, studies on the evolution law of heat transfer characteristics of its front-end heat exchangers during years of operation are limited.
Keywords: Subway; Heat pump; Capillary; Heat exchanger; Carbon-neutral (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923001368
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:335:y:2023:i:c:s0306261923001368
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.120772
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().