EconPapers    
Economics at your fingertips  
 

Understanding of thermal runaway mechanism of LiFePO4 battery in-depth by three-level analysis

Yue Zhang, Siyuan Cheng, Wenxin Mei, Lihua Jiang, Zhuangzhuang Jia, Zhixiang Cheng, Jinhua Sun and Qingsong Wang

Applied Energy, 2023, vol. 336, issue C, No S0306261923000594

Abstract: The complex chemical composition and material interactions of lithium-ion batteries challenge the in-depth understanding of thermal runaway reactions and failure mechanisms. In this study, detailed analysis and implementation have been made from three levels to further explain the thermal failure mechanism, from material interactions to cell-level experiments and applications. The LiFePO4 thermal runaway mechanism is put forward to characterize exothermic peaks from differential analysis of differential scanning calorimetry (DSC) and Accelerating Rate Calorimetry (ARC) data. Furthermore, the development, parameterization, and application of the thermal runaway prediction model are also discussed. Multi-heating rate data is a prerequisite to kinetic analysis and modeling work and provides valuable data set for LiFePO4 thermal failure. And the unraveled mechanism is believed to provide a profound understanding of the thermal failure mechanism, strengthening interactions between material characterization and thermal runaway modeling.

Keywords: Lithium-ion battery safety; Thermal stability; Thermal failure; Thermal runaway modeling; Kinetic analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923000594
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:336:y:2023:i:c:s0306261923000594

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.120695

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923000594