EconPapers    
Economics at your fingertips  
 

Data-driven fault detection and isolation in DC microgrids without prior fault data: A transfer learning approach

Ting Wang, Chunyan Zhang, Zhiguo Hao, Antonello Monti and Ferdinanda Ponci

Applied Energy, 2023, vol. 336, issue C, No S0306261923000727

Abstract: The lack of fault data is the major constraint on data-driven fault detection and isolation schemes for DC microgrids. To solve this problem, this paper develops an adversarial-based deep transfer learning model that can detect and classify short-circuit faults in DC microgrids without using historical fault data. In this transfer learning framework, the knowledge of faults is extracted from the transient features of line currents during normal operating disturbances, which is adversarially augmented and then transferred to a target domain as the labels of faults. With the transferred knowledge, a deep learning model combining convolutional neural network and attention-based bidirectional long short-term memory is trained, which is strengthened by attention and soft-voting ensemble mechanisms. In verification tests, this model reaches a high accuracy of over 90% in classifying various short-circuit faults in a multi-terminal DC microgrid model within a short response time of less than 1 ms. Moreover, it is robust against measurement noises and adaptive to system configuration changes. The test results prove the effectiveness of the proposed method in the protection of DC microgrids without prior knowledge of faults.

Keywords: DC microgrids; Protection; Current derivatives; Fault detection; Transfer learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923000727
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:336:y:2023:i:c:s0306261923000727

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.120708

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923000727