EconPapers    
Economics at your fingertips  
 

Minimum environmental load extension through compressed air extraction: Numerical analysis of a dry low NOx combustor

Raditya Yudha Wiranegara, Uyioghosa Igie, Pierre Ghali, Kamal Abudu, David Abbott and Richard Hamilton

Applied Energy, 2023, vol. 336, issue C, No S0306261923001678

Abstract: The operational flexibility of gas turbine (GT) engines is a key requirement to coexist alongside increasing renewable energy that is often intermittent. One of the GT flexibility criteria is the Minimum Environmental Load (MEL). This is the lowest load the engine can be operated, without infringing on emissions limits (particularly CO) and is relevant to periods when there is a priority to renewable generation or low power demand. This study along with a series of related works of the authors proposes compressor air extraction for MEL extension. Here, a stand-alone three-dimensional numerical dry low NOx combustor demonstrates the technical viability concerning combustor performance and emissions. In addition, supplemented with low-order models for durability and stability evaluations. For the first time, there is evidence to show that the combustor can handle the 18% compressed air extraction to sustain a new MEL. This operation is characterised by a 12.3% reduction in CO through an increase of the fuel split ratio by 2% after design exploration cases. However, at the expense of a smaller overall rise in NO emissions by 5%. The durability analysis focused on the wall liner temperature assessments, which show no unusually high temperature rise for the new MEL. Similarly, the thermoacoustic instability frequencies and gains are around the normal operation mode. When benchmarked against previous related engine-level analysis, the evidence shows that the new MEL is a 7% points reduction of load.

Date: 2023
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923001678
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001678

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.120803

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001678