Capacity estimation of lithium-ion batteries based on data aggregation and feature fusion via graph neural network
Zhe Wang,
Fangfang Yang,
Qiang Xu,
Yongjian Wang,
Hong Yan and
Min Xie
Applied Energy, 2023, vol. 336, issue C, No S0306261923001721
Abstract:
Lithium-ion batteries in electrical devices face inevitable degradation along with the long-term usage. The accompanying battery capacity estimation is crucial for battery health management. However, the hand-crafted feature engineering in traditional methods and complicated network design followed by the laborious trial in data-driven methods hinder efficient capacity estimation. In this work, the battery measurements from different sensors are organized as the graph structure and comprehensively utilized based on graph neural network. The feature fusion is further designed to enhance the network capacity. The specific data aggregation and feature fusion operations are selected by neural architecture search, which relieves the network design and increases the adaptability. Two public datasets are adopted to verify the effectiveness of the proposed scheme. Additional discussions are conducted to emphasize the capability of the graph neural network and the necessity of architecture searching. The comparison analysis and the performance under noisy environment further demonstrate the superiority of proposed scheme.
Keywords: Capacity estimation; Deep learning; Feature fusion; Graph neural network; Lithium-ion battery (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923001721
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001721
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.120808
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().