EconPapers    
Economics at your fingertips  
 

Hierarchical multi-agent reinforcement learning for repair crews dispatch control towards multi-energy microgrid resilience

Dawei Qiu, Yi Wang, Tingqi Zhang, Mingyang Sun and Goran Strbac

Applied Energy, 2023, vol. 336, issue C, No S0306261923001903

Abstract: Extreme events are greatly impacting the normal operations of microgrids, which can lead to severe outages and affect the continuous supply of energy to customers, incurring substantial restoration costs. Repair crews (RCs) are regarded as crucial resources to provide system resilience owing to their mobility and flexibility characteristics in handling both transportation and energy systems. Nevertheless, effectively coordinating the dispatch of RCs towards system resilience is a complex decision-making problem, especially in the context of a multi-energy microgrid (MEMG) with enormous dynamics and uncertainties. To this end, this paper formulates the dispatch problem of RCs in a coupled transportation and power-gas network as a decentralized partially observable Markov decision process (Dec-POMDP). To solve this Dec-POMDP, a hierarchical multi-agent reinforcement learning (MARL) algorithm is proposed by featuring a two-level framework, where the high-level action is used for switching decision-making between transportation and power-gas networks, and the lower-level action constructed via the multi-agent proximal policy optimization (MAPPO) algorithm is used to compute the routing and repairing decisions of RCs in the transportation and power-gas networks, respectively. The proposed algorithm also introduces an abstracted critic network by integrating the load restoration status, which captures the system dynamics and stabilizes the training performance with privacy protection. Extensive case studies are evaluated on a coupled 6-bus power and 6-bus gas network integrated with a 9-node 12-edge transportation network. The proposed algorithm outperforms the conventional MARL algorithms in terms of policy quality, learning stability, and computational performance. Furthermore, the dispatch strategies of RCs are analyzed and their corresponding benefits for load restoration are also evaluated. Finally, the scalability of the proposed method is also investigated for a larger 33-bus power and 15-bus gas network integrated with an 18-node 27-edge transportation network.

Keywords: Repair crews; Multi-energy microgrid; Resilience; Power-gas-transportation network; Hierarchical multi-agent reinforcement learning (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923001903
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001903

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.120826

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923001903