EconPapers    
Economics at your fingertips  
 

Optimal sizing for microgrids integrating distributed flexibility with the Perth West smart city as a case study

Chaimaa Essayeh and Thomas Morstyn

Applied Energy, 2023, vol. 336, issue C, No S0306261923002106

Abstract: With the decreasing cost of green technologies and the increasing ambitions to reach the net-zero carbon emissions target, more communities are engaged in renewable deployment and energy-intensive technologies such as heat pumps and electric vehicles will be intensively adopted in the near future. The integration of these appliances in lower grid levels will likely require grid reinforcements. However, some of these appliances are flexible and there is an opportunity to explore their flexibility potential to optimise the investment costs further. This paper proposes an optimal design strategy for a grid-connected site that returns the renewable generation and storage’s optimal sizing capacities and the required network reinforcement capacity. The novelty of the work is integrating network upgrade costs and considering flexibility from distributed flexible resources across planning and operation. The problem is formulated as a mixed integer piecewise linear problem, with the capacities of generation, storage and network upgrade as decision variables. The piecewise linear cost function related to the upgrade costs figuring in the objective function is then recast as a mixed-integer problem, and the flexible resources are modelled through an approximation method as a single virtual flexible asset. The application of the strategy on the Perth West smart city project as a case study demonstrates the importance of considering flexibility in the planning phase. The costs related to the storage system can decrease by up to 76%, and the overall costs by up to 35%, with the highest levels of savings, reached for the highest rates of electric vehicle adoption.

Keywords: Optimal sizing; Microgrid; Electric vehicles; Flexible assets; Grid reinforcement; Battery storage system (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923002106
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:336:y:2023:i:c:s0306261923002106

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.120846

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:336:y:2023:i:c:s0306261923002106