Stochastic programming approach for optimal day-ahead market bidding curves of a microgrid
Robert Herding,
Emma Ross,
Wayne R. Jones,
Vassilis M. Charitopoulos and
Lazaros G. Papageorgiou
Applied Energy, 2023, vol. 336, issue C, No S0306261923002118
Abstract:
The deregulation of electricity markets has driven the need to optimise market bidding strategies, e.g. when and how much electricity to buy or sell, in order to gain an economic advantage in a competitive market environment. The present work aims to determine optimal day-ahead market bidding curves for a microgrid comprised of a battery, power generator, photovoltaic (PV) system and an electricity load from a commercial building. Existing day-ahead market bidding models heuristically fix price values for each allowed bidding curve point prior to the optimisation problem or relax limitations set by market rules on the number of price–quantity points per curve. In contrast, this work integrates the optimal selection of prices for the construction of day-ahead market bidding curves into the optimisation of the energy system schedule; aiming to further enhance the bidding curve accuracy while remaining feasible under present market rules. The examined optimisation problem is formulated as a mixed integer linear programming (MILP) model, embedded in a two-stage stochastic programming approach. Uncertainty is considered in the electricity price and the PV power. First stage decisions are day-ahead market bidding curves, while the overall objective is to minimise the expected operational cost of the microgrid. The bidding strategy derived is then examined through Monte Carlo simulations by comparing it against a deterministic approach and two alternative stochastic bidding approaches from literature.
Keywords: Mixed-integer linear programming; Stochastic programming; Optimisation under uncertainty; Microgrid; Bidding curve; Day-ahead market (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923002118
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:336:y:2023:i:c:s0306261923002118
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.120847
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().