EconPapers    
Economics at your fingertips  
 

Design of a latent heat thermal energy storage system under simultaneous charging and discharging for solar domestic hot water applications

Moucun Yang, M.A. Moghimi, R. Loillier, C.N. Markides and M. Kadivar

Applied Energy, 2023, vol. 336, issue C, No S030626192300212X

Abstract: Latent heat thermal energy storage (LHTES) systems using phase change materials (PCMs) have appeared as promising solutions for energy storage when harnessing renewable energy sources in a wide range of engineering applications. The present study focuses on the design of horizontal shell-and-tube PCM-based LHTES systems capable of simultaneous charging and discharging in solar domestic hot water (SDHW) applications. Two scenarios are investigated: (i) initially fully charged, and (ii) initially fully discharged LHTES systems, in both cases with a 30-min charge/discharge time interval. Configurations with key geometrical design variations are considered to identify the best radial and tangential positions of the heat transfer fluid (HTF) tubes inside the shell that enhance storage performance against the following criteria: (i) gained and released thermal power, and (ii) total gained and released energy per unit mass of PCM. The distance between the hot and cold HTF tubes was maintained constant and an LHTES with horizontally aligned HTF tubes was selected as a baseline case. The findings showed that tangential displacement had a considerable impact on the performance of the system, while the effect of radial displacement was marginal. A design with displacements of ¼ tube diameter and 90° in the radial and tangential positions of the HTF tubes, respectively, had promising performance in both considered scenarios. In comparison to the baseline case, which had the hot and cold tubes positioned horizontally, and symmetrically on the shell's central plane, this configuration demonstrated a 103.02% enhancement in energy delivery in the fully discharged and a 2% enhancement in the fully charged scenario, respectively.

Keywords: Latent heat thermal energy storage (LHTES); Phase change material (PCM); Simultaneous charging and discharging; Solar domestic hot water (SDHW) (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192300212X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:336:y:2023:i:c:s030626192300212x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.120848

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:336:y:2023:i:c:s030626192300212x