Interfacial engineering via laser ablation for high-performing PEM water electrolysis
Jason K. Lee,
Tobias Schuler,
Guido Bender,
Mayank Sabharwal,
Xiong Peng,
Adam Z. Weber and
Nemanja Danilovic
Applied Energy, 2023, vol. 336, issue C, No S0306261923002179
Abstract:
A rationalized interfacial design strategy was applied to tailor the porous transport layer (PTL)-catalyst layer (CL) contact and the PTL bulk-phase architecture. Particularly, at the PTL-CL interface, our results reveal that laser ablated sintered titanium power-based PTLs improve electrolyzer performance at both the H2NEW Consortium baseline catalyst loading of 0.4 mgIr·cm−2 as well as at the ultra-low catalyst loading of 0.055 mgIr·cm−2. Under ultra-low catalyst loadings, the laser ablated PTL demonstrates maximum reduction of 230 mV compared to the commercial PTL at 4 A·cm−2, and reduces by 68 mV at 3.2 A·cm−2 under H2NEW baseline loading. Laser ablation alters the titanium phase at the interface, so it forms more uniform structure like a microporous layer or a backing layer, leading to an increase in the surface area in contact with the catalyst layer while preventing the membrane from deforming into the PTL. Moreover, we reveal that bulk-phase architecture modification of the PTL by ablating patterned pores at the flow field-PTL interface improves mass transport without sacrificing contact at the CL-PTL interface. Overall, laser ablation of the PTL is an effective method to customize interfacial design to enhance proton exchange membrane electrolyzer performance.
Keywords: Water electrolysis; Proton exchange membrane; Porous transport layer; Interface; Laser ablation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923002179
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:336:y:2023:i:c:s0306261923002179
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.120853
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().