The study of energy filtering management process for microgrid based on the dynamic response model of vanadium redox flow battery
Jing-Wei Ni,
Ming-Jia Li and
Teng Ma
Applied Energy, 2023, vol. 336, issue C, No S0306261923002313
Abstract:
For the efficient application of vanadium redox flow battery (VRB) in microgrid containing the clean renewable energy and advanced coal-fired power system such as the supercritical carbon dioxide (S-CO2) Brayton cycle power plant, a feasible energy filtering optimization process is proposed in this paper. A coupled dynamic response model of VRB and an optimized load distribution algorithm are covered in the process. First, the Ustack-Ibattery-SOC curves are fitted based on the coupled calculation model of VRB. The equivalent resistance of the simplified equivalent circuit model is further calculated. The dynamic response model is refined for the fast calculation of real-time efficiencies. Second, a basic operation scheme and an optimized operation scheme based on the moving average filtering method are selected as the load distribution algorithms. An energy filtering optimization management process that includes a configuration optimization design part and a load distribution part is further constructed. Finally, a case application is carried out to verify the feasibility of the proposed energy management process. The relevant results are presented as follows. First, the combination of the experimental data and the fitted curves can be used to calculate the equivalent resistance of the dynamic response model. The maximum Ustack of 86.14 V is obtained at the SOC of 0.99 and Ibattery of 10A when charging. Second, when applying the optimized operation scheme, the time average efficiency of VRB is operating at an efficient level of 82.75%. The change frequency of load command for each equipment and its dynamic response characteristic can be well matched. Finally, compared to the case where the basic operation scheme is selected in the experimental system, the time average efficiency of VRB is increased from 69.50% to 82.13%., the time average efficiency of S-CO2 power plant is increased from 39.79% to 40.02%. The application of energy filtering optimization management process for the actual microgrid is feasible. The study can provide the operation scheme and case application for VRB energy storage system in the actual microgrid.
Keywords: Vanadium redox flow battery; Dynamic response model; Load distribution algorithm; Energy filtering optimization management; Case application in microgrid (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923002313
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:336:y:2023:i:c:s0306261923002313
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.120867
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().