Battery-H2 storage system for self-sufficiency in residential buildings under different electric heating system scenarios
Jaehyun Go,
Jiwook Byun,
Kristina Orehounig and
Yeonsook Heo
Applied Energy, 2023, vol. 337, issue C, No S030626192300106X
Abstract:
An H2 storage system (i.e., an electrolyzer, H2 tank, and a fuel cell) has received attention for seasonal storage. The H2 storage system can improve energy conversion efficiency by utilizing recovered heat from the fuel cell in a residential application. This study investigated the potential of a battery-H2 storage system using the recovered heat to maximize energy self-sufficiency in residential buildings. The entire energy supply network consisted of a photovoltaic, electric heating system, and energy storage systems (i.e., battery, H2 storage system, and heat tank). To investigate the self-sufficiency performance, four storage cases (i.e., no storage, battery-only, H2 storage system, and battery-H2 storage system cases) were introduced to the residential buildings under two electric heating system scenarios (i.e., electric boiler and heat pump system). In addition, these cases were evaluated in terms of economic and environmental performance, and the effects of battery efficiency uncertainty and battery types on energy network performance were analyzed. The findings showed that the battery-H2 storage system achieved the highest self-sufficiency while reducing the battery capacity because the H2 storage system compensated for a self-discharge loss of the battery for seasonal storage. Accordingly, the battery-H2 storage system was the most cost-effective option for minimizing CO2 emissions in residential buildings. When the battery was used with the H2 storage system, improving battery energy conversion efficiency was more effective than battery self-discharge rate in reducing CO2 emissions further. In addition, a lead-acid battery was more cost-effective than a lithium-ion battery but showed low potential to reduce CO2 emissions and was disadvantageous in terms of physical size.
Keywords: Residential buildings; Self-sufficiency; Battery; Hydrogen storage system; Rule-based control strategy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192300106X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:337:y:2023:i:c:s030626192300106x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.120742
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().