A laboratory test of an Offline-trained Multi-Agent Reinforcement Learning Algorithm for Heating Systems
C. Blad,
S. Bøgh,
C. Kallesøe and
Paul Raftery
Applied Energy, 2023, vol. 337, issue C, No S030626192300171X
Abstract:
This paper presents a laboratory study of Offline-trained Reinforcement Learning (RL) control of a Heating Ventilation and Air-Conditioning (HVAC) system. We conducted the experiments on a radiant floor heating system consisting of two temperature zones located in Denmark. The buildings are subjected to real-world weather. A previous paper describes the algorithm we tested, which we summarize in this paper. First, we present a benchmarking test which we conducted during spring 2021 and winter 2021/2022. This data is used in the Offline RL framework to train and deploy the RL policy, which we then tested during winter 2021/2022 and spring 2022. An analysis of the data shows that the RL policy showed predictive control-like behavior, and reduced the oscillations of the system by a minimum of 40%. Additionally, we show that the RL policy is minimum 14% more cost-effective than the traditional control policy used in the benchmarking test.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192300171X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:337:y:2023:i:c:s030626192300171x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.120807
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().