EconPapers    
Economics at your fingertips  
 

A laboratory test of an Offline-trained Multi-Agent Reinforcement Learning Algorithm for Heating Systems

C. Blad, S. Bøgh, C. Kallesøe and Paul Raftery

Applied Energy, 2023, vol. 337, issue C, No S030626192300171X

Abstract: This paper presents a laboratory study of Offline-trained Reinforcement Learning (RL) control of a Heating Ventilation and Air-Conditioning (HVAC) system. We conducted the experiments on a radiant floor heating system consisting of two temperature zones located in Denmark. The buildings are subjected to real-world weather. A previous paper describes the algorithm we tested, which we summarize in this paper. First, we present a benchmarking test which we conducted during spring 2021 and winter 2021/2022. This data is used in the Offline RL framework to train and deploy the RL policy, which we then tested during winter 2021/2022 and spring 2022. An analysis of the data shows that the RL policy showed predictive control-like behavior, and reduced the oscillations of the system by a minimum of 40%. Additionally, we show that the RL policy is minimum 14% more cost-effective than the traditional control policy used in the benchmarking test.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192300171X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:337:y:2023:i:c:s030626192300171x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.120807

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:337:y:2023:i:c:s030626192300171x