Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency
Hongqing Song,
Junming Lao,
Liyuan Zhang,
Chiyu Xie and
Yuhe Wang
Applied Energy, 2023, vol. 337, issue C, No S0306261923002659
Abstract:
Underground Hydrogen Storage in Reservoirs (UHSR) is promising for long-term and large-scale renewable energy storage, yet improvements in capacity and efficiency are still highly demanded, which requires a deep understanding of the pore-scale mechanisms. Here, we investigate UHSR using micromodels and discover three pore-scale mechanisms, namely the preferential-to-uniform flow transformation, floating flow, and dead-end pore invasion. Preferential flows ensure the base storage capacity and the early transformation to uniform flows promotes the storage efficiency. Floating flow not only enhances the flow transformation but also increases the storage capacity via its facilitation for dead-end pore invasion. We also provide pore-scale mechanism-based elucidation for the effects of pore heterogeneity, injection flux, and oil/brine distribution on storage capacity and efficiency. Injection flux affects the preferential and floating flows to regulate the rate of base storage and determine whether controlling the flow profile or breaking through the outlet via inertia induced preferential flow. Pore heterogeneity affects the proportion of dynamic dead-end pores and possibility of breaking through via capillary induced preferential flow. In comparison with brine saturated condition, the oil saturated condition is unfavorable of floating flow and dead-end invasion. We propose that brine saturated initial condition with high injection flux and median pore heterogeneity are optimal for both UHSR capacity and efficiency from our micromodel study. We further optimize the capacity from 50 % to 95 % and the efficiency from 7.4 × 10-2 kg/(m3·s) to 2.1 × 10-1 kg/(m3·s) according to revealed mechanisms and influencing factors. From the microscale perspective, this work brings critical insights for enhancing and broadening the application of UHSR engineering practice.
Keywords: Hydrogen underground storage; Pore-scale phenomena; Multiphase flow; Micromodel; Storage performance (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923002659
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:337:y:2023:i:c:s0306261923002659
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.120901
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().