Online job scheduling scheme for low-carbon data center operation: An information and energy nexus perspective
Wenyu Liu,
Yuejun Yan,
Yimeng Sun,
Hongju Mao,
Ming Cheng,
Peng Wang and
Zhaohao Ding
Applied Energy, 2023, vol. 338, issue C, No S0306261923002829
Abstract:
As the digitalization of the economy and society accelerates, the enormous and fast-growing energy consumption of data centers is becoming a global concern. With the unique power consumption flexibility introduced by computing job scheduling, data centers could play an important role in enhancing the capability to integrate renewable generation as a demand-side resource. In this paper, we propose an online job scheduling scheme for low-carbon data center operation from an information and energy nexus perspective. We formulate the job scheduling problem as a Markov decision process in which job dependencies, job heterogeneity, and quality of service are considered comprehensively. To address the challenges of large-scale heterogeneous computing jobs, we propose a deep reinforcement learning-based approach to solve the energy-aware scheduling problem and achieve an optimal online policy. The case study results based on real-world data illustrate that the proposed scheme can effectively reduce the carbon footprint and energy cost of a data center while maintaining the quality of service for cloud products.
Keywords: Data center; Job scheduling; Demand-side resource; Deep reinforcement learning; Low-carbon operation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923002829
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:338:y:2023:i:c:s0306261923002829
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.120918
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().