EconPapers    
Economics at your fingertips  
 

Intelligent multiobjective optimization design for NZEBs in China: Four climatic regions

Xianguo Wu, Xinyi Li, Yawei Qin, Wen Xu and Yang Liu

Applied Energy, 2023, vol. 339, issue C, No S0306261923002982

Abstract: Near-zero-energy-consumption buildings (NZEBs) are of great significance for sustainable development, and their design and research have attracted increasing academic attention. To drive and realize the energy saving design and achieve carbon emission and thermal comfort optimization of NZEBs, in this paper, an intelligent optimization method integrating the BIM-DB and PSO-RF-NSGA-III method is established. Multiobjective optimization problems involving NZEBs in four typical climate regions in China are explored. With a typical office building as an example, first, simulation calculations regarding the energy consumption, carbon emissions and indoor thermal comfort in the four climatic regions are performed based on orthogonal tests and BIM-DB. Second, the nonlinear mapping relationships between building design parameters and prediction targets are constructed with the PSO-RF model, which is trained with sample data. The obtained nonlinear mapping relations are used to establish the objective function of NSGA-III, and the multiobjective Pareto-optimal solution set is obtained with the developed PSO-RF-NSGA-III algorithm. Finally, the only optimal solution is determined by using the ideal point method, and reference near-zero-energy-consumption office building parameters are calculated for different climate regions. The conclusions are as follows. (1) The PSO-RF algorithm can efficiently predict building energy consumption, carbon emissions and thermal comfort. In the four regions, the goodness of fit of the three targets is greater than 0.94. (2) Multiobjective optimization can be performed with the proposed RF-NSGA-III intelligent optimization method. After optimizing multiple groups of optimization schemes and adopting energy saving measures, the energy consumption levels in the four climate regions are reduced by 39.72 %, 32.22 %, 26.94 % and 35.37 %, and the other goals are optimized. (3) Index calculations indicate that the optimized building design parameters meet the specified standards for NZEBs, and the main influencing factors and corresponding measures vary from region to region.

Keywords: NZEB; BIM-DB; Machine learning; PSO-RF-NSGA-III; Multiobjective optimization; Four climatic regions in China (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923002982
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:339:y:2023:i:c:s0306261923002982

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.120934

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923002982