EconPapers    
Economics at your fingertips  
 

A comprehensive coupled 0D-ECM to 3D-CFD thermal model for heat pipe assisted-air cooling thermal management system under fast charge and discharge

Danial Karimi, Hamidreza Behi, Maitane Berecibar and Joeri Van Mierlo

Applied Energy, 2023, vol. 339, issue C, No S0306261923003513

Abstract: Prediction of electrical and thermal behavior of lithium-ion capacitor (LiC) technology as an asymmetric technology is feasible by designing a precise model. Such a model should mimic the behavior of LiCs in heavy-duty applications where high current rates are applied. The developed model is used to design a management system based on efficient modeling tools, including 0D (zero-dimensional) electro-thermal models and 3D computational fluid dynamics (CFD) thermal models. A validated model is essential for LiCs as they operate at high dynamic current rates. In this article, the 0D second-order equivalent circuit model is developed to extract the electrical parameters of LiCs. Then, the thermal model is developed to be linked to the electrical model to make an electro-thermal platform capable of identifying the electro-thermal parameters. The characterization tests are performed within a wide range of temperatures, from the freezing temperature of −30 °C to the hot temperature of + 60 °C. Such a temperature range has never been carried out before. The validation is performed based on the owned experimental results. The applied current rates are from 0.1 A to 500 A, which shows the work's uniqueness in the field of electro-thermal modeling. Later, the extracted parameters have been set as inputs to the 3D CFD thermal model to design and develop a hybrid thermal management system (TMS) based on air cooling and heat pipes. Such a hybrid TMS maintains the maximum temperature at 24.6 °C when the temperature difference between the hottest and coldest cells is only 0.5 °C.

Keywords: Lithium-ion capacitor (LiC); Equivalent circuit model (ECM); Computational fluid dynamics (CFD); Thermal management system (TMS); Heat pipe (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923003513
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003513

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.120987

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003513