EconPapers    
Economics at your fingertips  
 

A robust autonomous sliding-mode control of renewable DC microgrids for decentralized power sharing considering large-signal stability

Xiangke Li, Minghao Wang, Chaoyu Dong, Wentao Jiang, Zhao Xu, Xiaohua Wu and Hongjie Jia

Applied Energy, 2023, vol. 339, issue C, No S0306261923003835

Abstract: DC microgrids (MGs) are providing a pathway toward a zero-carbon-based future. The intermittent renewable energy sources (RESs) and non-linear constant power loads (CPLs) thrive in DC MGs, craving for effective coordinative control solutions to ensure the stability of DC MGs. In this paper, a robust autonomous sliding mode control (SMC) scheme is proposed for achieving a globally stable and decentralized power sharing operation of multiple dispatchable units (DUs) in CPL-integrated DC MGs. Firstly, by using the high-order finite-time observer (HOFTO) technique, the disturbances, such as the power coupling and parameter uncertainties between different DU-interfaced converters, are self-eliminated within a finite time without any output current sensor and communication link. Secondly, a decentralized control scheme synthesizing the robust SMC and droop control algorithm is proposed to achieve proportional power sharing among paralleled DUs and precise DC bus voltage regulation. The proposed control guarantees the global system’s large-signal stability by ensuring the local stability of an individual converter, offering a simple yet effective stable coordinative solution. Finally, simulation and experimental results verify the effectiveness of the proposed strategy.

Keywords: Renewable DC microgrid; Decentralized power sharing; Large-signal stability; Robust sliding-mode control; High-order finite-time observer (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923003835
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003835

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121019

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003835