EconPapers    
Economics at your fingertips  
 

Dust soiling effects on decentralized solar in West Africa

Stewart Isaacs, Olga Kalashnikova, Michael J. Garay, Aaron van Donkelaar, Melanie S. Hammer, Huikyo Lee and Danielle Wood

Applied Energy, 2023, vol. 340, issue C, No S0306261923003574

Abstract: West Africa’s proximity to the Sahara Desert can cause photovoltaic (PV) systems to experience significant power generation reductions when particulates settle onto solar panel surfaces in a phenomenon known as soiling. Previous studies have created models to estimate PV soiling globally, but these models have several limitations in the region due to the accuracy of the input particular matter (PM) concentration values, the accuracy of methods for computing power loss, and the regional use of decentralized solar systems. Here we develop and apply a methodology for the development of a soiling estimation model based on the Coello framework, and evaluate it when using input PM concentration values from both a reanalysis dataset (MERRA-2) and a dataset derived from satellite-observations (WUSTL). This model reduces error in soiling-related power loss estimates by approximately 50% when compared to the unadjusted Coello approach. Using this model, we find soiling losses can exceed 50% in the most greatly affected locations during the Harmattan season and these power losses can vary considerably each year (between 26 and 53% in Niamey, Niger). To support PV system design, we develop a function that relates maximum soiling losses to annual cleaning frequencies in major cities. Finally, we find if decentralized solar is used to meet electricity access goals as projected, PV cleaning costs could sum up to $1Bn (USD) annually in sub-Saharan Africa by 2030.

Keywords: PV soiling; Decentralized solar; MERRA-2; Satellite-observation; West Africa; Electricity Access; Harmattan (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923003574
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:340:y:2023:i:c:s0306261923003574

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.120993

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:340:y:2023:i:c:s0306261923003574