EconPapers    
Economics at your fingertips  
 

Green hydrogen to tackle the power curtailment: Meteorological data-based capacity factor and techno-economic analysis

Joungho Park, Kyung Hwan Ryu, Chang-Hee Kim, Won Chul Cho, MinJoong Kim, Jae Hun Lee, Hyun-Seok Cho and Jay H. Lee

Applied Energy, 2023, vol. 340, issue C, No S030626192300380X

Abstract: Hydrogen production through water electrolysis stands as a potential remedy for the problem of curtailment, which refers to the deliberate downward adjustment of output power below capacity for the purpose of balancing supply and demand. This study demonstrates how comprehensive system modeling can be used to a priori assess the economics of producing green hydrogen from curtailed renewable energy of solar and wind. A case study is presented to demonstrate how actual meteorological data are utilized to anticipate the quantity of renewable energy throughout the year, which in turn is used to estimate the capacity factor and LCOH (Levelized Cost of Hydrogen) of a renewable energy/water electrolysis system. The base case of a renewable energy source of 100 MW capacity coupled with a 20 MW hydrogen production system and 20 MW transmission to the grid shows an LCOH of 5.9 USD/kg with a capacity factor of 25%. Sensitivity analysis is carried out to examine the impact of electrolyser size and the composition of renewable energy source on its capacity factor and economic feasibility. The results demonstrate that the capacity factor of an electrolysis system is not directly proportional to the renewable energy capacity but depends on the its designed capacity as well as the climate pattern and the mix ratio between solar and wind energy. Though the effect of the electrolyser’s operating range is found insignificant in a part-load operation but not in an overload operation. In addition, the effects of the capital cost, system efficiency, and electricity price on LCOH are assessed.

Keywords: Green hydrogen; Renewable energy; Curtailment; Meteorological data; Techno-economic analysis; Electrolysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192300380X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:340:y:2023:i:c:s030626192300380x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121016

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:340:y:2023:i:c:s030626192300380x