EconPapers    
Economics at your fingertips  
 

Thermodynamic analysis of a waste heat utilization based efficient liquefaction and low-temperature adsorption carbon capture hybrid system

Trevor Hocksun Kwan

Applied Energy, 2023, vol. 340, issue C, No S0306261923004038

Abstract: Cryogenic CO2 capture can obtain high-pressure and pure CO2, but existing methods are inefficient as they usually discharge the waste heat of refrigeration. Therefore, a new hybrid system is proposed to recycle the waste cooling, heat, and uncondensable CO2 of liquefaction CO2 capture into low-temperature adsorption CO2 capture. This enhances the overall energy efficiency and the CO2 recovery rate over existing cryogenic CO2 capture without external input. Moreover, it enables practical sub-zero temperature CO2 adsorption while lowering the desorption temperature to 70 °C. This system is analyzed by coupling the liquefaction CO2 capture and low-temperature adsorption CO2 capture thermodynamic models, whose heat and cooling needs are compared to that available by a vapor compression cycle. Results show that for 10% mol. CO2 flue gas, the proposed system is optimal at −53 °C and 5 MPa to yield a 2nd law efficiency of 9%, a CO2 recovery rate of 80%, and specific energy consumption of under 1.65 MJ/(kg of CO2). As the cooling demand is typically twice the heat needed for sorbent regeneration, a vapor compression cycle designed to meet the former can naturally meet the latter. Ultimately, the new hybrid system represents a new carbon capture technology with better potential to achieve carbon neutrality via waste heat utilization.

Keywords: Cryogenic carbon capture; Adsorption; Second law analysis; System coupling; Waste heat utilization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923004038
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:340:y:2023:i:c:s0306261923004038

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121039

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:340:y:2023:i:c:s0306261923004038