EconPapers    
Economics at your fingertips  
 

An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update

Ling Liu, Jujie Wang, Jianping Li and Lu Wei

Applied Energy, 2023, vol. 340, issue C, No S0306261923004130

Abstract: Accurate prediction of wind turbine power is important for the safe operation of wind farms. However, most of the previous online transfer learning methods are partially updated and time-consuming. Here we propose a novel system-wide update online transfer learning model to overcome these shortcomings. To improve the multi-source data fusion accuracy, a new time trend quantification method is applied to expand the data source, a convolutional neural network multi-source data fusion method is proposed to reduce the dimension of data, and a Hilbert spatial feature construction method is used to construct spatial information of data. To achieve system-wide update and rapid prediction, we have deleted the weight unit of traditional method and added two data buffers. The results show that: (1) the proposed multi-source data processing method has the smallest mapping errors, which mean absolute error for all wind turbines is less than 32.1; (2) the proposed online transfer learning model has the highest prediction accuracy, which is higher than 92.5%.

Keywords: Wind turbine power; Transfer learning; Online update (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923004130
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:340:y:2023:i:c:s0306261923004130

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121049

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:340:y:2023:i:c:s0306261923004130