Electricity peak shaving for commercial buildings using machine learning and vehicle to building (V2B) system
Mahdi Ghafoori,
Moatassem Abdallah and
Serena Kim
Applied Energy, 2023, vol. 340, issue C, No S0306261923004166
Abstract:
Reducing electricity peak demand is essential to maintain the balance between supply and demand side in electricity power markets, as well as reduce utility costs and environmental impacts. With growth in adoption of Electric Vehicles (EVs), there is an emerging opportunity to balance electrical power demand of buildings by storing electricity in EVs during low demand periods and discharging electricity into buildings during peak demand periods. Due to uncertainty in time and magnitude of peak demand, decision makers are always faced with a challenging task to identify optimal schedules for charging and discharging EVs to minimize peak electricity demand. This paper presents the development of a novel system that is capable of predicting day-ahead building electricity demand profile and identifying optimum schedule of charging and discharging EVs to minimize electricity peak demand. The system is designed to comply with planned EV trip schedules and minimum state of charge (SOC). The system consists of (1) machine Learning (ML) model to predict electrical power demand, and (2) demand management optimization model to identify optimal schedule for charging and discharging EVs. Four methods are explored to develop the ML model, including histogram-based gradient boosting, random forest, deep artificial neural network (DNN), and long short-term memory (LSTM). A case study of multi-tenant commercial building is analyzed to evaluate the performance of the system and demonstrate its new capabilities. The results of the case study shows that LSTM has the best performance in terms of mean absolute error, root mean square error, and mean absolute percentage error with average values of 7.44, 17.78, and 20.08 %, respectively. Five scenarios for shaving peak electricity demand, including combinations of two electric vehicles, a stationary battery, and a PV system are investigated. Scenarios including the stationary battery and the PV system are considered to evaluate the full potential of peak demand reduction in the case study building. The results of the demand management optimization model show up to 36 % reduction in peak demand using two EVs, one stationary battery, and PV system of 40 kW capacity. The key contributions that this study adds to existing knowledge are: (1) developing machine learning models to predict day-ahead electricity demand in 15-minute intervals, (2) integrating machine learning and optimization algorithms in identifying EV charging and discharging schedules to minimize utility cost by shaving peak energy demand, and (3) considering planned EV trips and minimum SOC requirements in identifying optimal charging and discharging of EVS to shave peak energy demand in buildings. The implementation of this system provides practical solutions for managing electricity demand in commercial buildings using EVs. By reducing energy consumption and promoting the innovative use of EVs, this system offers a sustainable approach to managing electricity demand in commercial buildings.
Keywords: Peak Load Reduction; Electric Vehicles; Building Load Prediction; Demand Response; Peak Shaving; Charging Stations (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923004166
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:340:y:2023:i:c:s0306261923004166
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121052
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().