EconPapers    
Economics at your fingertips  
 

Tunable H2/CO syngas production from co-gasification integrated with steam reforming of sewage sludge and agricultural biomass: A experimental study

Ge Kong, Xin Zhang, Kejie Wang, Linling Zhou, Jin Wang, Xuesong Zhang and Lujia Han

Applied Energy, 2023, vol. 342, issue C, No S0306261923005597

Abstract: Biowastes to tunable H2/CO syngas is a promising way to produce clean energy carrier. This study proposed a new concept of improving the production of tunable H2/CO syngas and tar abatement via co-gasification integrated with inline steam reforming (co-GSR) of wheat straw (WS) and sewage sludge (SS) over self-derived gasification/co-gasification carbon materials (G/CGCMs). Binary mixtures with varying WS/SS mass ratios were initially subjected to steam co-gasification, achieving H2-enriched syngas with the tunable H2/CO molar ratio of 1.77 – 3.35. By introducing C[WS] in co-GSR process, the synergistic interactions between binary mixture and C[WS] on the cumulative gas yield, H2 yield, and syngas yield were more predominant by using WS/SS-9/1 as the feedstock, reaching 94.74, 51.53, and 77.99 mmol/g. Moreover, co-GSR of WS/SS-9/1 presented the highest CCE (98.77C%) and CGE (121.63%), suggesting the C content in the binary mixture and C[WS] was almost entirely converted and reformed into gaseous product. Correspondingly, WS/SS-9/1 subjected to co-GSR was also found to gain the lowest tar yield (5.99 g/Nm3). These observations were possibly because the addition of 10% of SS in the blend could not only assure the sufficient C and volatile contents in the blend, but also ensure the sufficient supply of alkali metals and alkaline earth metals (AAEMs) from SS as a catalyst to facilitate catalytic cracking and reforming of intermediate tar from decomposition of 90% of WS. When G/CGCMs were applied in both GSR and co-GSR processes, co-biocarbon C[WS + SS] used in the GSR of SS could garner a higher H2 concentration (57.79vol%) and H2/CO ratio (2.89). In addition, plausible reaction pathways and mechanisms regarding co-GSR of binary WS/SS mixture in the presence of G/CGCMs were discussed and elucidated. Simply put, this study provides a newly sustainable route to produce tunable H2/CO syngas towards a clean and sustainable waste management way.

Keywords: Co-gasification; Inline steam reforming; Tunable H2/CO syngas; Gasification/co-gasification carbon materials; Tar elimination; Biowaste (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923005597
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005597

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121195

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:342:y:2023:i:c:s0306261923005597