Quantifying agricultural productive use of energy load in Sub-Saharan Africa and its impact on microgrid configurations and costs
Amanda Farthing,
Evan Rosenlieb,
Darlene Steward,
Tim Reber,
Clement Njobvu and
Chrispin Moyo
Applied Energy, 2023, vol. 343, issue C, No S0306261923004956
Abstract:
The use of advanced energy technologies for agricultural purposes—such as irrigation, refrigeration, crop processing, and egg incubation—has the potential to increase crop yield, reduce vulnerability to changing precipitation patterns, increase shelf life, strengthen income and employment opportunities in rural areas, and reduce emissions by displacing fossil fuel-based technologies. These productive uses of energy (PUE) in remote areas could potentially be powered by microgrids that additionally serve otherwise unelectrified communities, most of which are located in rural Sub-Saharan Africa. In this paper, we use high-resolution geospatial data to estimate the end-use electricity demand for a range of agricultural PUE across Sub-Saharan Africa, and we share these data in an open-access mapping tool. Next, we use REopt®, a techno-economic optimization model of energy systems, to determine the cost and system sizing implications of incorporating agricultural PUE into microgrid designs in Kenya and Zambia. We estimate the upper bound of agricultural PUE demand for irrigation, milling, shelling, refrigeration, and egg incubation across Sub-Saharan to be 16.8 TWh/yr. We find that incorporating local agricultural PUE into microgrid system designs increases the required system sizing while having minimal impact on the levelized cost of energy of these systems. Our analysis is the first to demonstrate the PUE potential in the agricultural sector at a 10x10-kilometer resolution across Sub-Saharan Africa and to show, at scale, how site-specific PUE can impact the cost and sizing of microgrids that are otherwise deployed to serve local household and community load.
Keywords: Microgrids; Productive use of energy (PUE); Agriculture; Energy decision making; Electrification (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923004956
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:343:y:2023:i:c:s0306261923004956
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121131
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().