EconPapers    
Economics at your fingertips  
 

A novel high-efficiency solar thermochemical cycle for fuel production based on chemical-looping cycle oxygen removal

Jing Chen, Hui Kong and Hongsheng Wang

Applied Energy, 2023, vol. 343, issue C, No S0306261923005251

Abstract: Solar-driven two-step thermochemical cycling is a promising means to convert solar energy into storable and transportable chemical fuel, in which hydrogen or carbon monoxide is generated by continuous reduction and oxidation reactions. However, the high energy consumption of deoxygenation in the reduction step is an important factor restricting its efficiency improvement. In this work, we propose a fuel production system with thermochemical cycles coupled with chemical-looping cycles, which uses the chemical-looping cycle oxidation reaction at relatively low temperature to absorb the oxygen produced by the thermochemical cycle reduction reaction. The oxygen-carriers in the chemical-looping cycle can be reduced by adding reductants or direct heating with waste heat from the thermochemical cycle. The coupled system can remove the oxygen in the thermochemical cycle reduction reaction and reduce the energy consumption in this process. In addition to the hydrogen production, waste heat from the thermochemical cycle can also be used in the chemical-looping cycle to generate extra electricity. Theoretical calculation results show that in the oxidation temperature range of 900–1100 °C, the energy consumption for separating oxygen from inert gas after sweeping in the traditional thermochemical cycle accounts for 30–57% of the total energy consumption, while the chemical-looping cycle part in the coupled system accounts for 26–36%. The coupled system can improve the solar-to-fuel efficiency by 45.9% to 20.9% and improve the solar-to-electricity efficiency by 104.1% to 14.6% without heat recovery compared to traditional thermochemical cycles when the reduction temperature is 1500 °C. Under the conditions of 20% solid-state heat recovery and 90% gas-state heat recovery, the coupled system achieves a solar-to-fuel efficiency of 28.1%. In addition, we also put forward a vacuum pump, inert gas and chemical-looping cycles combined oxygen removal method. Since the vacuum pump has high efficiency and fast deoxygenation speed in the low vacuum interval, the system efficiency can be further improved. Our research can provide a new solution to the high energy consumption of deoxygenation in thermochemical cycles.

Keywords: Solar thermochemical; Chemical-looping cycle; Oxygen separation; Efficiency improvement; Thermodynamics (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923005251
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005251

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121161

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005251