A transfer learning method for electric vehicles charging strategy based on deep reinforcement learning
Kang Wang,
Haixin Wang,
Zihao Yang,
Jiawei Feng,
Yanzhen Li,
Junyou Yang and
Zhe Chen
Applied Energy, 2023, vol. 343, issue C, No S0306261923005500
Abstract:
Reinforcement learning (RL) is popularly used for the development of an orderly charging strategy for electric vehicles (EVs). However, a new environment (e.g., charging areas and times) will cause EV users' driving behaviors and electricity prices to change, which leads to the trained RL-based charging strategy is not suitable. Besides, developing a new RL-based charging strategy for the new environment will cost too much time and data samples. In this paper, a deep transfer reinforcement learning (DTRL)-based charging method for EVs is proposed to realize the transfer of trained RL-based charging strategy to the new environment. Firstly, we formulate the uncertainty problem of EV charging behaviors as a Markov Decision Process (MDP) with an unknown state transfer function. Furthermore, an RL-based charging strategy based on deep deterministic policy gradient (DDPG) is well-trained by using massive driving and environmental data samples. Finally, an EV charging method based on transfer learning (TL) and DDPG is proposed to perform the knowledge transfer on the trained RL-based charging strategy to the new environment. The proposed method is verified by numerous simulations. The results show that the proposed approach can reduce the outliers to meet the user charging demands and shorten the EV charging strategy development time in the new environment.
Keywords: Electric vehicle; Transfer learning; Deep reinforcement learning; Charging strategy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923005500
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005500
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121186
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().