EconPapers    
Economics at your fingertips  
 

Nature-based solution for urban traffic heat mitigation facing carbon neutrality: sustainable design of roadside green belts

Chang Xi, Chen Ren, Ruijun Zhang, Junqi Wang, Zhuangbo Feng, Fariborz Haghighat and Shi-Jie Cao

Applied Energy, 2023, vol. 343, issue C, No S0306261923005615

Abstract: Urban heat islands (UHI) and heat waves related to climate change can increase urban carbon emissions and endanger human health. Transportation accounts for a large part of UHI and greenhouse gas emissions, which can effectively be mitigated by nature-based solutions (NBS). Roadside green belt is an important element of urban NBS targeting to blck traffic-related pollutants; however, less attention was paid to its impact on mitigating traffic heat emissions. Therefore, the design of roadside green belts was quantitatively investigated considering traffic heat in this work. A new method to rapidly model moving traffic source was proposed, namely urban traffic coupling source (UTCS) method, to deal with the dynamic and complex diffusion of traffic-generated heat. The impact of roadside green belts' locations and types on the thermal environment of cities' motorized and non-motorized area was investigated. The design parameters (tree spacing and shrub length) were evaluated for the optimum co-benefits between cooling efficiency and nurture management costs. Results showed that placing trees and shrubs near non-motorized lanes and sidewalks provided a favorable cooling effect, with the non-motorized areas' temperature decreased by up to 1.05 °C. When the range of tree spacing and shrub length were 0–0.375 W and 0.17–0.63 L (W and L are the width and length of the road, respectively), a maximum co-benefit improvement of 45.7% could be achieved. Moreover, this work provides a guideline for sustainable design of roadside green belts to improve the urban climate and achieve carbon neutrality target.

Keywords: Urban heat island; Carbon neutrality; Roadside green belt; Nature-based solution; Cooling effect; Urban traffic coupling source method; Economic effectiveness (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923005615
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005615

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121197

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005615