Two-stage data-driven dispatch for integrated power and natural gas systems by using stochastic model predictive control
Yuehao Zhao,
Zhiyi Li,
Ping Ju and
Yue Zhou
Applied Energy, 2023, vol. 343, issue C, No S0306261923005652
Abstract:
The optimal dispatch of the integrated power and natural gas systems can increase the utilization rate of renewable energy and energy efficiency while decreasing operation costs. The common prediction errors of wind power and electric load have the potential to negatively impact the normal operation of the integrated power and natural gas systems. A two-stage data-driven dispatch strategy is proposed to reduce this effect, consisting of the day-ahead dispatch stage and the intraday rolling dispatch stage using stochastic model predictive control (MPC). In the day-ahead dispatch stage, the data-driven chance constraints of tie-line power and reserve of gas-fired generators are built, and the day-ahead tie-line power is obtained and regarded as input parameters to the intraday dispatch stage. In the intraday dispatch stage, the data-driven chance constraints of tie-line power and reserve of gas-fired generators with the latest rolling prediction data are built, and the remaining control variables are obtained. The distribution characteristics of the stochastic prediction errors of wind power and electric load are captured and described by the variational Bayesian Gaussian mixture model with massive historical data. Then the original stochastic mixed-integer nonlinear programming problem is converted to a tractable deterministic one by the quantile-based analytical reformulation and convex relaxation technique. Finally, the proposed strategy is verified by the numerical experiments based on a modified IEEE 33-bus system integrated with a 10-node natural gas system and a micro hydrogen system. The numerical results demonstrate that the proposed strategy reduces the actual costs and decreases the violation rate caused by the stochastic prediction errors of wind power and electric load.
Keywords: Two-stage dispatch; Chance-constrained programming; Data-driven; Stochastic model predictive control; Integrated power and natural gas systems (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923005652
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005652
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121201
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().