EconPapers    
Economics at your fingertips  
 

Commuting-pattern-oriented stochastic optimization of electric powertrains for revealing contributions of topology modifications to the powertrain energy efficiency

Xingyu Zhou, Chao Sun, Fengchun Sun and Chuntao Zhang

Applied Energy, 2023, vol. 344, issue C, No S0306261923004257

Abstract: The performance of an electric vehicle (EV) powertrain is greatly influenced by the design scheme, control strategy, and driving conditions. Owing to uncertainties in driving conditions and the mutual correlation between design scheme and control strategy, identifying the optimal topology and component parameters of EV powertrains for improving the energy efficiency of EVs remains a challenging task. Oriented to the commuting patterns of individuals, this paper proposes a stochastic optimization method for identifying the superior powertrain design that optimizes the expected energy economy of the EV powertrain and reduces the energy economy variability in random driving conditions. This paper also introduces a machine-learning solution to the complex mutual restrictions among design variables, control strategies, and driving conditions, which determines the feasible design space and powertrain performance. Suggested by massive validations, the stochastic optimization method reduces the expectation and deviation of the energy consumption of EV powertrains up to 12.0% and 5.6%, compared with deterministic optimization methods. Additionally, by comparative evaluation among stochastic optimal design results of different topologies, contributions of topology modifications to the energy efficiency of EV powertrains are clarified, and the superior powertrain topology is identified, which improves 17.1% expected energy economy compared with the current popular topology.

Keywords: Electric vehicle; Powertrain topology; Stochastic optimization; Machine learning; Energy efficiency; Driving uncertainty (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923004257
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:344:y:2023:i:c:s0306261923004257

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121061

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:344:y:2023:i:c:s0306261923004257