Extracting principal building variables from automatically collected urban scale façade images for energy conservation through deep transfer learning
Xinran Yu,
Zhengbo Zou and
Semiha Ergan
Applied Energy, 2023, vol. 344, issue C, No S0306261923005925
Abstract:
Buildings account for 40% of the energy consumption and 13% of the greenhouse gas (GHG) emissions in the U.S. To improve building energy efficiency, cities around the U.S. issued energy policies, such as the energy performance disclosure requirement in New York City, to encourage building owners to make informed retrofitting decisions. However, complying with these policies is expensive and time-consuming for government agencies and building owners, especially for old buildings where detailed building information is not readily available. In this work, we propose an automatic, non-intrusive, and scalable framework to capture energy-essential building variables through reasoning building façade images - FaçadeReasoner. Specifically, we first build a comprehensive building information dataset and identify the most impactful (i.e., principal) variables in relation to building energy performance and GHG emissions using the state-of-the-art feature attribution model. Next, we propose a method to automatically collect an urban scale building image dataset with more than 10,000 façade images and extract principal-building-variables from these images using deep transfer learning. Results show that FacadeReasoner has the capability to predict principal building variables, namely “building type” (accuracy 0.77), “year built” (accuracy 0.62), “building height” (R2 0.80), and rough estimates of “building area” (R2 0.46) from façade images. This study is unique as it marks the first attempt to enable an automated end-to-end framework for urban scale principal-building-variables extraction, providing an efficient and economical alternative for large building portfolio owners and managers (e.g., municipalities) to comprehend urban scale energy-related building information for informed decision-making, directly contributing to Net-Zero 2050.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923005925
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:344:y:2023:i:c:s0306261923005925
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121228
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().