Design and thermal performance evaluation of a new solar air collector with comprehensive consideration of five factors of phase-change materials and copper foam combination
Wentao Hu,
Alekhin Vladimir Nickolaevich,
Yue Huang and
Chaoping Hou
Applied Energy, 2023, vol. 344, issue C, No S0306261923006323
Abstract:
The low thermal conductivity of phase-change materials (PCMs) reduces the heat storage capacity, heat release efficiency, heat peak migration capacity, and heat collection efficiency of PCM-based solar air collectors (SACs) in building heating systems, thereby affecting the comprehensive heating requirements of building users. To solve this problem, in this study, a new SAC was designed with PCMs and copper foam (Type 2: PCMACFC-SAC model) by comprehensively considering five factors, namely thermal conductivity, heat storage capacity, heat release efficiency, heat peak migration capacity, and heat collection efficiency, based on a pure PCM-based SAC (Type 1: PCM-SAC model). Thereafter, the two models were compared. Comparative results of the thermal-performance evaluation index revealed that the thermal conductivity of the Type 2 test block was 2.2–2.3 times that of the Type 1 test block, indicating significantly improved thermal conductivity of the copper foam and PCM composite test block. Although the PCMACFC-SAC displayed better heat storage speed rate, time, and quantity, its nighttime heat release time was approximately 19.64% less than that of the PCMs-SAC; PCMACFC-SAC had a lower output temperature and smaller temperature fluctuation range over the solar day, which can increase indoor thermal comfort. The daily average heat collection efficiency of the PCMACFC-SAC decreased by 12.77%, indicating a stronger heat peak migration ability, which can transfer a greater amount of heat energy to be released at night.
Keywords: Phase-change materials; Copper foam; Thermal-performance; Solar air collector; Evaluation index analysis method (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923006323
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:344:y:2023:i:c:s0306261923006323
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121268
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().