EconPapers    
Economics at your fingertips  
 

Off-grid solar PV–wind power–battery–water electrolyzer plant: Simultaneous optimization of component capacities and system control

Alejandro Ibáñez-Rioja, Lauri Järvinen, Pietari Puranen, Antti Kosonen, Vesa Ruuskanen, Katja Hynynen, Jero Ahola and Pertti Kauranen

Applied Energy, 2023, vol. 345, issue C, No S0306261923006414

Abstract: Green hydrogen production systems will play an important role in the energy transition from fossil-based fuels to zero-carbon technologies. This paper investigates a concept of an off-grid alkaline water electrolyzer plant integrated with solar photovoltaic (PV), wind power, and a battery energy storage system (BESS). The operation of the plant is simulated over 30years with 5min time resolution based on measured power generation data collected from a solar photovoltaic installation and a wind farm located in southeastern Finland. Levelized cost of hydrogen (LCOH) is calculated based on the capital expenditures (CAPEX), the operating expenses (OPEX), and the respective learning curves for each of the components. Component degradation and replacements during the operational lifetime are included in the model, and the capacity of the components and the system control are simultaneously optimized to obtain the minimum LCOH. A sensitivity analysis performed over different installation years and discount rates reveals that for the off-grid alkaline system, the implementation of a wind farm as the sole power supply is the most economical solution until the installation years 2035–2040. Solar PV and a BESS are found to increase the full-load hours of the electrolyzer and reduce the electricity curtailed in the off-grid plant to less than 8%. However, with the current component prices and the climate in the studied region, they are not economically beneficial. It is found that the cost of hydrogen can be reduced to 2 €/kg by the year 2030.

Keywords: Green hydrogen; Levelized cost of hydrogen; Alkaline water electrolysis; Solar PV–wind power; Battery energy storage system; Off-grid system optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923006414
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:345:y:2023:i:c:s0306261923006414

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2023.121277

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:345:y:2023:i:c:s0306261923006414