Enabling metal substrates for garnet-based composite cathodes by laser sintering
Walter Sebastian Scheld,
Linda Charlotte Hoff,
Christian Vedder,
Jochen Stollenwerk,
Daniel Grüner,
Melanie Rosen,
Sandra Lobe,
Martin Ihrig,
Seok, Ah–Ram,
Martin Finsterbusch,
Sven Uhlenbruck,
Olivier Guillon and
Fattakhova–Rohlfing, Dina
Applied Energy, 2023, vol. 345, issue C, No S0306261923006992
Abstract:
In this study, a laser irradiation method developed by Fraunhofer ILT was used to sinter screen-printed cathode layers of LiCoO2 (LCO) and Li7La3Zr2O12 (LLZO) directly on a stainless steel current collector. The laser sintering method was proved to be a promising method to sinter the composite cathode onto steel with greatly reduced side reactions and material degradation. In comparison, conventional sintering and another light-absorption-based sintering method, namely rapid thermal processing (RTP) in a lamp furnace, led to almost complete decomposition of the LLZO phase accompanying with the detrimental formation of LaCoO3 and CoO. Phase and morphology analysis of the laser-sintered cathodes using Raman spectroscopy, X-ray diffraction, and scanning electron microscopy confirmed sintering of LCO and LLZO through the layer with small amounts of secondary phases (LaCoO3, Li0.5La2Co0.5O4 and CoO). The resulting porous matrix of the laser-sintered cathode was infiltrated with a polyethylene oxide (PEO) electrolyte to connect the cathode to an LLZO separator and a Li metal anode without an additional sintering step. This model cell was used to evaluate the electrochemical activity of the laser-sintered composite cathodes, which exhibited a specific discharge capacity of 102 mAh g−1 at 4.0 V in the first electrochemical cycle.
Keywords: Laser sintering; Composite cathode; Screen-printing; LLZO; LCO; Current collector; Photonic sintering; Garnet; Li7La3Zr2O12; LiCoO2; Solid-state battery (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923006992
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:345:y:2023:i:c:s0306261923006992
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121335
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().