Dynamic pricing for fast charging stations with deep reinforcement learning
Li Cui,
Qingyuan Wang,
Hongquan Qu,
Mingshen Wang,
Yile Wu and
Le Ge
Applied Energy, 2023, vol. 346, issue C, No S0306261923006980
Abstract:
With the rapid development of electric vehicles (EVs) and charging infrastructures, the unbalanced utilization rate of fast charging stations (FCSTs) and the long waiting time for charging have aroused considerable attention. The incurred low operation profit of FCSTs and low satisfaction of EVs impose difficulties on the further development of EV industry. Existing literature ignored the influence of real-time charging price changes on traffic flow variation and EV charging determination during the dynamic price regulating process. This paper focuses on solving these crucial issues in the dynamic pricing for FCSTs with deep reinforcement learning (DRL). Firstly, considering the spatial–temporal interactions of different roads, a traffic flow prediction model is proposed based on the LSTM combined with the GNN-FiLM. Then, the Origin-Destination (OD) estimation is used to estimate the charging requirements of EVs based on the predicted traffic flow, and a charging demand prediction method for FCSTs is developed by converting the EV satisfaction into economic costs with different dimensions. Then, the vehicle–road learning environment is built with the Markov decision process (MDP), and a dynamic pricing strategy based on the Deep Deterministic Policy Gradient (DDPG) learning is proposed to achieve the optimal charging prices of FCSTs with maximum operation profit. Moreover, during the learning process, the real-time charging price is renewed based on the predicted charging demand, and the future charging demand is further predicted under the renewed charging price until the optimal price is achieved. Finally, simulation results validate that the proposed dynamic pricing strategy effectively improves the profit of FCSTs, alleviates the road congestion, and improves the users’ satisfaction.
Keywords: Electric vehicle (EV); Fast charging station (FCST); Dynamic pricing; User satisfaction; deep reinforcement learning (DRL) (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923006980
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:346:y:2023:i:c:s0306261923006980
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121334
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().