Evaluating the impact of wildfire smoke on solar photovoltaic production
Samuel D. Gilletly,
Nicole D. Jackson and
Andrea Staid
Applied Energy, 2023, vol. 348, issue C, No S0306261923006670
Abstract:
There are growing needs to understand how extreme weather events impact the electrical grid. Renewable energy sources such as solar photovoltaics are expanding in use to help sustainably meet electricity demands. Wildfires and, notably, the widespread smoke resulting from them, are one such extreme event that can impair the performance of solar photovoltaics. However, isolating the impact that smoke has on photovoltaic energy production, separate from ambient conditions, can be difficult. In this work, we seek to understand and quantify the impacts of wildfire smoke on solar photovoltaic production within the Western United States. Our analysis focuses on the construction of a random forest regression model to predict overall solar photovoltaic production. The model is used to separate and quantify the impacts of wildfire smoke in particular. To do so, we fuse historical weather, solar photovoltaic energy production, and PM2.5 particulate matter (primary smoke pollutant) data to train and test our model. The additional weather data allows us to capture interactions between wildfire smoke and other ambient conditions, as well as to create a more powerful predictive model capable of better quantifying the impacts of wildfire smoke on its own. We find that solar PV energy production decreases 8.3% on average during high smoke days at PV sites as compared to similar conditions without smoke present. This work allows us to improve our understanding of the potential impact on photovoltaic-based energy production estimates due to wildfire events and can help inform grid and operational planning as solar photovoltaic penetration levels continue to grow.
Keywords: Solar energy; Wildfire risk; PM2.5; Solar photovoltaic (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923006670
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:348:y:2023:i:c:s0306261923006670
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121303
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().