Carbon emissions accounting and prediction in urban agglomerations from multiple perspectives of production, consumption and income
Wencong Yue,
Yangqing Li,
Meirong Su,
Qionghong Chen and
Qiangqiang Rong
Applied Energy, 2023, vol. 348, issue C, No S0306261923008097
Abstract:
Urban agglomerations (UAs) play a momentous role in carbon reduction. The prerequisites for achieving carbon reduction goals in UAs are accounting and predicting their carbon emissions. When considering carbon reduction goals in China, it is crucial to pay attention to the joint influence of carbon emissions and economic benefits. Hence, in this study, an improved multi-regional input–output (MRIO) approach was established to quantify and predict carbon emissions for the UA, incorporating a biproportional scaling method (RAS) and Latin hypercube sampling (LHS). Specifically, a) the carbon emissions of UAs were quantified using the MRIO model from the perspectives of production, consumption and income; b) the carbon flows between cities in UAs were identified based on final demand and primary inputs, and c) the features of UAs’ carbon emissions in the future were predicted using RAS and LHS. To verify the effectiveness of the approach, a case study of a typical UA region in China [i.e., the Pearl River Delta (PRD)] was proposed. The results showed that the contribution of sectors to carbon emissions could be identified from multiple perspectives, and carbon flows can help regions coordinate emissions reductions. The majority of future carbon emissions would be generated from the areas of population and economic agglomeration (i.e., Guangzhou and Shenzhen), although the growth trend of carbon emissions of those would keep lower. The policy of carbon reduction should be urgently carried out in locations with high carbon emissions growth rates (e.g., Zhaoqing and Zhuhai). To improve the ability for carbon reduction in the PRD, cooperation in multiple cities to promote energy efficiency is advocated. The government should also increase technical support for carbon reduction and consider the balanced development of the economy, population, and resources in the PRD.
Keywords: Multi-region input–output approach; Multiple perspectives; Biproportional scaling method; Latin hypercube sampling; Pearl River Delta (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923008097
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008097
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121445
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().