Multi-objective optimization of biomass gasification based combined heat and power system employing molten carbonate fuel cell and externally fired gas turbine
Dibyendu Roy
Applied Energy, 2023, vol. 348, issue C, No S0306261923008504
Abstract:
Bioenergy is expected to play a critical role in a Net-Zero 2050 scenario. India ranks second in the world in terms of rice production. By-product rice husk, which is produced in large quantities, is currently burned and discarded by farmers. The primary objective of the research is to use rice husk as a fuel in an energy system that would otherwise be wasted. The rice husk might be better utilised to produce hydrogen-rich syngas, which could subsequently be used to generate clean electricity in fuel cell-based systems. Here, a novel combined heat and power system consisting of a biomass gasifier, molten carbonate fuel cell (MCFC), an externally fired gas turbine (EFGT), and a water heating facility has been developed. The proposed cogeneration system has undergone extensive thermodynamic and economic analyses. In addition, response surface methodology (RSM) was used for multiobjective optimization. An extensive investigation was conducted to determine how design factors influence exergy efficiency and the levelized unit cost of energy of the system.The results suggest the optimal design parameters are found at current density = 1015.25 A/m2, cell temperature = 700 ℃, and pressure ratio = 1.69. The optimization analysis shows that the cogeneration system has the maximum exergy efficiency of 41.15% and the lowest levelized unit cost of energy of 0.044 $/kWh.
Keywords: MCFC; Energy system; Cogeneration; Bioenergy; Optimization; Response surface methodology (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261923008504
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:348:y:2023:i:c:s0306261923008504
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2023.121486
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().